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Abstract

In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns, is known as the

Beltrami-Michell Formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the

more prevalent displacement or mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted

application, could not become a true alternative to the Navier's displacement method, which can solve all three types of

boundary value problems. The restrictions in the BMF have been alleviated by augmenting the classical formulation with a novel

set of conditions identified as the boundary compatibility conditions. This new method, which completes the classical force

formulation, has been termed the Completed Beltmmi-Michell Formulation (CBMF). The CBMF can solve general elasticity

problems with stress, displacement, and mixed boundary conditions in terms of stresses as the primary unknowns. The CBMF

is derived from the stationary condition of the variational functional of the Integrated Force Method. In the CBMF, stresses for

kinematically stable structures can be obtained without any reference to the displacements either in the field or on the boundary.

This paper presents the CBMF and its derivation from the variational functional of the Integrated Force Method. Several
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Associate Fellow, A/AA.



examples are presented to demonstrate the applicability of the completed formulation for analyzing mixed boundary value

problems under thermomechanical loads. Selected example problems include a cylindrical shell, wherein membrane and

bending responses are coupled, and a composite circular plate.
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Nomenclature

strain energy in the Integrated Force Method (IBM) functional

radius of shell

complementary strain energy in the IFM functional

modulus of elasticity

material matrix

plate or shell thickness

plate or shell rigidity

length of shell

plate bending moments

shell bending moment

shell tangential force

directional cosines of the outward normal

components of surface tractions

intensity of the distributed load

radial coordinates

boundary compatibility condition in terms of stresses

traction conditions in terms of stresses

temperature at the midsurface

transverse displacement components

prescribed boundary displacements

potential of external loads in the IFM functional
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Cartesian coordinates

coordinates of shell contours

coefficient of thermal expansion

cylindrical shell parameter

boundary of an elastic continuum

temperature difference between inner and outer surfaces

plane strain components

Poisson's ratio

IFM variational functional for plane stress, plates, and shells, respectively

plane stress components

Airy's stress function for plane stress

shell stress function

particular integral for mechanical and thermal loads, respectively

shell domain

Introduction

The method of forces, also known as the Beltrami-Miche[l Formulation (BMF), and its variant, the AJry's stress function

formulation, were the preferred tools of analysis in elasticity during the 1940's and 1950's. 1,2 In fact, solutions for many

classical elasticity problems have been obtained via the method of forces. 1-3 The method of forces, however, could not compete

with the Navier's displacement formulation, especially in analyzing plates and shells with displacement and mixed boundary

conditions. Thus, the application of the method of forces diminished, and the displacement formulation gained popularity. The

demise of the method of forces was not due to any intrinsic generic deficiency of the method but to the incompleteness of the

formulation. Because a set of boundary equations was missing, the application of the classical BIVlF was restricted to solving

only problems with stress boundary conditions. In other words, the Beltrami-Michell's force formulation can be used to solve

stress boundary value problems, but it cannot solve the more prevalent displacement and mixed boundary value problems. The



missingsetofequations, which completes the BMF, has been identified as the boundary compatibility conditions. At this time,

these boundary compatibility conditions have been derived only from a variational formulation. Direct derivation of boundary

compatibility conditions is not known, and this may be the primary reason why these equations were not formulated earlier.

Augmentation of the classical BMF with these boundary compatibility conditions resulted in a novel force method--the

Completed Beltrami-MicheU Formulation (CBIVI_. The CBMF bestows equal emphasis on stress equilibrium and strain

compatibility conditions. It is as universal as the Navier's displacement formulation, solving all three classes of elasticity

problems: stress, displacement, and mixed boundary value problems. Thus, the CBIVIF overcomes the deficiency of the classical

BMF. The CBMF can provide solution to stresses without any reference to the displacements, either in the field or on the

boundary, for kinematically stable structures.

The primary purpose of the structural analysis is to determine the internal stress state in an elastic continuum. In the CBMF,

stresses are obtained directly as a solution to a set of equations of this formulation. Displacements, if required, can be calculated

from stresses using integration. In the Navicr's displacement method, displacements (whether required or not) must be

generated first; then stresses are determined indirectly through differentiation. As a result, in the displacement method, stresses

can become inaccurate, especially when approximate techniques are used. In the CBMF, problems with thermal and initial

strains are handled directly by the compatibility formulation, whereas in the Navier's displacement method, they have to be

treated indirectly using the concept of equivalent loads. The development of the CBMF is further justified because all the

solutions that have been obtained with the classical BMF have to be verified; that is, it must be determined whether the boundary

compatibility conditions have been satisfied or not. The noncompliance of boundary compatibility conditions for a classical

elasticity solution is indicated in Ref. 4.

The novel boundary compatibility conditions, the key ingredient in the CBMF, were accidentally derived and then

identified during the formulation of the variational functional 5 of the Integrated Force Method (IFM) for the finite element

discrete analysis. The IFM for the finite element analysis, which can be considered the discretizedversion of the CBMF, actually

was formulated before the CBMF. Henceforth, in this paper, the force method for analyzing boundary value problems in

elasticity and for analyzing plates and shells is called the Completed Beltrami-Micbell Formulation (CBMF). The method of

forces for the finite element numerical analysis is still referred to as the Integrated Force Method (IFIV0.

The boundary compatibility conditions were reported earlier for two-dimensional elasticity problems, 5 and stress analyses

using boundary compatibility conditions were published for rectangular 4 and circular plates 6 in flexure for mechanical loads.
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This paper includes the formal presentation of the CBMF and its application to analyzing circularplates and circular cylindrical

shells subjected toboth mechanical and thermal loads. Specialized equations forplates and shells arederived fxom the stationary

condition of the IFM variational functional, and several mixed boundary value problems are solved to demonstrate the capability

of the formulation. The Rrstproblemis a circularplate made of two different materials and subjected to thermomechanical loads.

The solution of the plate example demonstrates the application of the CBMF to problems with displacement and interface (or

jump) boundary conditions. Cylindrical shells are analyzed next. The shell examples demonstrate the use of the CBMF when

membrane and bending responses are coupled. In addition, this paper serves as an initial, yet an unified and systematic, attempt

to bring back the method of forces for analyzing general elastic continua. It is anticipated that the development of the CBMF

for various shell struculres, wherein membrane and bending responses are coupled, may become a significant avenue for

research.

Completed Beltrami-Michell Formulation of Elasticity

The basic concepts of the method of forces (the CBMF being its specialization for analyzing elastic continua) can be

initiated from the stress-strain law, which is universal to all analysis formulations. The stress-strain law that links stresses { o'}

to strains {e} through a known material matrix [G] can be written as

=[o]{d (i)

The stressesinEq. (I)must satisfythestateofequilibrium,and thestrainsmust satisfycompatibilityconditions.Inother

words,thestressesinthemethod offorcescan be determined from thestressstrainlaw givenby Eq. (1)and (19the stress

equilibriumequationsand (If)thestraincompatibilityconditions.Displacementsare notessentialforthedeterminationof

stresses.

A finite elastic continuum consists of a field and a boundary. Stresses and strains must satisfy equilibrium equations and

compatibility conditions both in the field and on the boundary, respectively, as

(Ia) Stress equilibrium equations in the field

(Ib) Stress equilibrium equations on the boundary (or traction conditions)

0Ia) Strain compatibility conditions in the field

(IIb) Strain compatibility conditions on the boundary



In the method of forces, all equation sets (Ia, Ib, IIa, and IIb), including the compatibility conditions, are expressed in terms

of stresses. The equation set of the classical BMF contained conditions (Ia, Ib, and Ha), but it missed the boundary compatibility

conditions (lib). The CBMF utilizes all four conditions (Ia, Ib, IIa, and fib).

Governing Equations for the Completed Beltrami-Michell Formulation

Consider the CBMF equations in the following plane stress problem. For simpficity and clarity, homogeneous kinematic

boundary conditions are considered, and initial deformations along with body forces are neglected, The derivation of the

equations from the IFM variational functional for nonhomogeneons boundary conditions with body forces is given in Ref. 5

and is not repeated here. However, a brief presentation of the IFM variational functional is provided in the appendix for quick

reference. The equations, as obtained from the IFM functional, can be separated into five groups (Ia, Ib, Ha, IIb, and III) as

follows:

Group Ia: Equilibrium Equations in the Field

Ox +---_-y =O (2a)

3z 3ay
+--_--= 0 (2b)

3x oy

Group Ib: Boundary_ Equilibrium Equations (or Traction Conditions)

sl (a) = cr;'_ + %'5 -e_ = o

% (_) = % nx+ %'5 - _ = o

(3a)

(3b)

where crx, Cry,and _'xyare three components of the stress tensor; nx and ny are thedirection cosines of the outward normal vector;

and Px and Py are prescribed boundary tractions. In the field, the equilibrium equations are functionally indeterminate7 because

three unknown stresses are expressed in terms of two (Group Ia) equations.

Group IIa: Field Compatibility. Condition

The functional indeterminacy in the domain is alleviated through the field compatibility condition of St, Venant, which

can be written in terms of the strain components as



and in terms of the stresses as

d2Ey d2ex a2r_

÷ O Oy=o (4)

v%

Equations (2), (3), and (5), in essence, represent the stress or the classical BMF in elasticity that was developed in 1900.1

This formulation, which is incomplete, can only solve stress boundary value problems.

Group Hb: Boundary_Compatibility (_onditlon

Three stresses on the boundary are expressed in terms of two traction equations, Eqs. (3a) and (3b), thus, there is one degree

of functional indeterminacy. The field compatibility condition given in Eq. (5) alleviated functional indeterminacy in the field.

However, because St. Venant did not formulate the compatibility on the boundary, the stresses there remained indeterminate.

The functional indeterminacy on theboundary, which made the Beltrami-Michell stress formulation incomplete, was alleviated

by Patnaik 5 with the formulation of the boundary compatibility condition. This boundary condition, when expressed in terms

of stresses for isotropic material, has the following form

(6)

The set of three equations consisting of the traction conditions given in Eqs. (3) and the boundary compatibility condition

given in Eq. (6) ensures stress functional determinacy on the boundary because three unknown stresses are expressed in terms

of three equations.

Equations (2), (3), (5), and (6) represent the CBMF, which ensures the functional determinacy of the stresses both in the

field and on the boundary of an elastic continuum. The CBMF can solve a general elastic continuum with stress, displacement,

or mixed boundary conditions.

Group IH: Continuity Conditions for Displacement Boundary. Conditions)

The stationary condition of the IFM functional, given by Eq. (48) in the appendix, also yields two displacement boundary

conditions, and for the homogeneous case,



u=_=0 (a) v=_=0 (b) (7)

where _ and _ are prescribed boundary displacements. In the CBMF, the displacement boundary conditions do not appear

explicitly in the stress calculations, provided the structure is kinematieally stable. The displacements, if required, can be

calculated from stresses by integration using the kinematic boundary conditions. 4,6,8,9

Completed Beltrami-Michell Formulation Solution Strategy for Composite Continuum

The CBMF solution strategy for a composite elastic continuum with fields of _21 and £22, and stress, displacement, and

boundaries of Fs, Fu, and Ft, respectively (Fig. 1 ), are briefly described.

Step 1: Satisfy the field equilibrium and field compatibility conditions given by Eqs. (2) and (4), for both domains 121 and

K22. (In the displacement formulation, the Navier's equations 3 have to be satisfied.)

Step 2: Satisfy the traction boundary conditions given in Eqs. (3) and boundary compatibility condition given in Eq. (6)

on contours Fs and Fu, respectively. On the displacement formulation, equivalent traction conditions written in terms of

displacements and displacement boundary conditions on contours Fs and Fu, respectively, have to be satisfied.)

Step III: On the interface boundary, Ft, three conditions have to be satisfied:

two residual equilibrium equations,

_I(a)-_(o') = 0 (8a)

and one residual compatibility condition,

q_ I(cr) _ q_n(cr) = 0 (9)

The functions 9(cr) and q_(cr) were defined in Eqs. (3) and (6), and the superscripts I and 11denote the domains £21 and K'22,

respectively. (In the displacement method at the interface boundary, two displacement and two traction continuity conditions

have to be satisfied.)

Step 4: Once the solution for stresses has been obtained, displacements, if required, can be calculated by integration. The

evaluation of integration constants requires the kinematic boundary conditions. In the Navier's formulation, the displacements

must be calcdated whether they are required or not. Stresses are then calculated using the differentiation and the stress-strain

law.
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The composite structure can be solved by the CBMF or by the Navier's displacement method. The problem, however,
:i _ii !i i ! :

cannot be solved by the classical BMF because of the lack of boundary compatibility conditions for the boundary Fu and for

the interface contour Ft.

Properties of Compatibility Conditions

Two properties of compatibility conditions for the case of a plane stress problem are given in this section.

(1) The field compatibility condition, written in terms of displacement variables, u and v, becomes a trivial constraint, such
! :i! i : : i

as an identity [f(u,v)-f(u,v)] = 0, where f represents the field compatibility condition given by Eq. (4). The boundary

compatibility condition given by Eq. (6), however, does not become a trivial equation when written in terms of displacements.

In terms of displacements, the boundary compatibility condition given by Eq. (6) becomes

=L -+ JJ + + =o (10)

The nontrivial property of the boundary compatibility condition contradicts the popular belief that all compatibility

conditions are automatically satisfied in the displacement method.

(2) The field compatibility condition can be derived by eliminating the displacement components from the slxain

displacement relations. This logic as yet cannot be extended to derive the boundary compatibility condition. At present, the

boundary compatibility conditions can be generated only from the IFM variational functional. This is, perhaps, aprimary reason

why the boundary compatibility conditions could not be formulated earlier.

Applications of the Completed Beltrami-Michell Formulation

In this section, the CBMF is applied to the stress analysis of circular plates and circular cylindrical shells. Governing

equations for both cases are derived from the stationary condition of the IFM functional. Several example problems are

presented to demonstrate the CBMF solution procedure.

Completed Beltrami-Michell Formulation for Bending of Circular Plates

The IFM variational functional for a circular plate subjected to mechanical and thermal loads is given in the appendix. Its

stationary condition yields the following equations:
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(a) Field equation of equilibrium:

d 2 dMqj
+ra=O

(b) Field compatibility condition:

rd (M¢-VMr)+(I+v)(M¢ -Mr)+ "ltr'_'_'_r )=OOttf dAt'_ ^

(11)

(12)

In Eqs. (11) and (12), M r and Me are the radial and tangential moment, respectively; r is the radial coordinate; qis the

intensity of the distributed load; h is the plate thickness; K, a material constant, is defined as (Eh3112)( 1 - v2), vis the Poisson' s

ratio; % is the thermal coefficient of the material; and At is the temperature difference between the upper and the lower surface

of the plate.

(e) Boundary conditions are specialized for various support conditions as follows:

Simply supported contour:.

M r = 0 (13)

Clamped contour:

(1/K)(M¢ - vM r)+ o_t(At[h) = 0 (14)

Note that the condition given in Eq. (13) represents the static boundary condition, whereas Eq. (14) represents the novel

boundary compatibility condition.

For the analysis of composite domains, transition (jump) conditions on interfaces between regions made of different

materials have to be established. These equilibrium and compatibility conditions at the interface follow:

dr

(15a)

(15b)

b(M I _VIM I) _ i At At (15c)

In Eqs. (15), superscripts I and II denote two regions of the composite plate made of different materials. The boundary

compatibility condition given by Eq. (14) and the residual boundary compatibility condition at the interface given by Eq. (15c)

1o



representnew equations for analyzing circular plates. These equations (which were missing from the classical BMF and are

unique to the CBMF) make possible the solution of composite plates in terms of stress parameters only.

In the CBMF, the thermal effects are accounted for on the right side of the compatibility conditions given by Eq. (12) and

(14), whereas mechanical loads appear on the right side of the equilibrium equation given by Eq. (11). The Navier's

displacement method does not include the compatibility conditions in explicit terms, which is the rightful abode for thermal

effects. The Navier's formulation, however, accounts for the thermal effects in the equilibrium equations through the concept

of work equivalent loads, which may introduce numerical errors when approximate solution techniques are used.

Example: Analysis of a Composite Circular Plate Subjected to Mechanical and Thermal Loads

The CBMF solution procedure is presented through the analysis of a composite plate (Fig. 2). The plate consists of two

segments: an inner plate (O./) with radius a, material properties E i and v i, and thickness h/; and an outer annular plate (I2o) with

inner radius a, outer radius b, material properties E o and vo, and thickness ho. The inner plate (12i) is subjected to a uniformly

distributed mechanical load of intensity q, and the outer plate (£2o) is exposed to uneven heating with the temperature difference

At. The plate is clamped at the outer contour, given by r = b. This example illustrates the CBMF solution process for (a) using

the boundary compatibility condition at a damped contour, (b) analyzing composite domains by means of transition conditions,

and (c) analyzing thermomechanical loads.

Equations (11) and (12) are solved to obtain general expressions for the moments M r and Me for the regions 12i and 12o,

respectively:

M_(r) =--_ + }CI(1 +Vi) log r+l c'(1-v'4l, 1/_+I21),_ -_6 (3 + vi)qr 2 (16a)

r- z - - 4 ix l, 21
(16b)

M°r(r)=-B--%-+lc.(1 +v_] log r +Ic2(1-Vo)+IDrz 2 _ "" 2 2
(17a)

Mg(r)='_+}C2(l+Vo)logr-l c2(1-Vo)+lD2 (17b)

11
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where BI, C1, DI, B2, C2, and D 2 are integration constants.

appear in the homogeneous solution given by Eqs. (17a) and (17b) because _r (_At) = 0, These
The thermal load does not

six constants are calculated from the following six conditions: one boundary compatibility condition given in Eq. (14) at the

outer contour (r = b), three transition conditions given in Eqs. (15) at the interface (r = a), and (3) two implicit conditions at

the origin (r = 0). The implicit conditions require that the moments M r and Mq_have the finite values at the origin. The solution

is obtained for a specific composite plate with the inner plate (£2i) made of aluminum and the outer plate (£20) made of steel.

Numerical values for the material parameters in the domains £2i and £20, respectively, are taken asE i = 10.6× 106 psi, v i = 0.33,

at(0 = 12.6 × 106/°F, Eo = 30.0 × 106 psi, vo = 0.30, and at(°) = 6.3 × 10-6/°F. The radii are a = 6 in. and b = 12 in., and the

thicknesses are hi = 0.2 in. and ho = 0.15 in.; the magnitude of the distributed load is q = 100 lb/in.2; and the temperature

difference is At = 50 OF. After the integration constants are determined, the final solution for Mr and M¢is for the domain £2i

(0 < r < a)

and for the domain £20 (a < r < b)

M_(r) = 844.05 - 20.81r 2

M_ (r) = a44.05-12.44r 2

Mr° (r) = 2046.63 -(5203.06/r2) - 1170 log r

M_(r) = 2676.63 + (5203.06/r2)-1170 log r

(18a)

(18b)

(19a)

(19b)

The displacements, if required, can be obtained by integrating the moment-curvature relations and by using displacement

continuity conditions to evaluate constants of integration. Displacements for the domains _ and £2o, respectively, are given as

w i(r) = 1.473 + 0°07 Ir + 2.342 × 10-4 r3 (20a)

w°(r) = 3.427- 0.379r + 0.083 log r + 0.730/r (20b)

The solution for Mr, Me, and w (Eqs. (18) to (20)), respectively, has been verified from the corresponding solution with

the Navier's displacement method of analysis.

Integrated Force Method Variational Formulation for Cylindrical Shells

In this section, through an example of a circular cylindrical shell subjected to thermomechanical loads, the CBMF is

extended to analyzing shell structures wherein membrane and bending responses are coupled. In CBMF, M x and force N_ are

12
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theforceunknowns forthisproblem.The variationalfunctionalfortheproblem isdefincd,and al!_uations oftheCBMF,

includingthenovelboundarycompatibilityconditions,forthecylindricalshellareobtainedfrom itsstationarycondition.The

IFM functionalfortheproblem has thefollowingform:

H_ = A + B- W (21)

where the strain energy A, the complementary energy B, and the work of external load W are given as

(22a)

- ",,,",,+o,,o)],,oI;l+,,,j<,,T j- (22b)

W = j.oqw d_ (22c)

where w is the radial displacement; K = (Eh 3/12)( 1 - v2) is the rigidity; to is the temperature at the midsurface of the shell; At

is the temperature difference between the inner and outer surfaces; and _is the stress function. The stress function is defined

through a procedure similar to that given by Washizu, 1° as

M x = _ (23a)

d2_

N@ =-a--_-+ q (23b)

The variationHs¢ hasthefollowingform:

8Hs e=-r rd2Mx +IN +qld,128w

J_2L dx 2 a tp j

ft2[Mx a d2N¢ v)of _.__aott d2__t_]dl.2,tp- 'K Eh ,/x2 +(1+

+ 2 dw dM x xl' (a#rM_,<_(---_+I<_] + 2a#ra(Nq'+ax _S d_' a 1 dNqj

L t, dx) dx ix<, L t. Ea ,oj dx- tEh dx
(24)

13
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The stationary condition of the variational functional with respect to the displacement w and the stress function _yields

all the equations of the CBMF as follows:

(a) Field equation of equilibrium:

(b) Field compatibility condition:

Ms
K

±n d2M 
a q, +_+q=O

a d2N d2to
Eh dx 2 t'(l+v)t_''_t- _--0" " h a°:t dx 2

(25)

Contour terms in Eq. (24) yield boundary conditions. These are specialized for various support conditions as follows.

(26)

Free Contour

d

On a free contour, w _ 0 and _- w _ 0, hence both the moment and its derivative must vanish:

M x = 0 (27a)

-d (Mx)= O (27b)

Simply Supported Contour

The rotation of the cross section is not prevented on a simply supported boundary. The condition 8(dwldr) _ 0 results in

Mx = 0 (28a)

d M
Because w _ 0, the derivative -_-(x) = d_F / dx is not zero on a simply supported boundary, resulting in

o:0 (28b)

Equation (28b) represents a boundary compatibility condition for a simply supported boundary for the cylindrical shell.

Clamped Contour

For the clamped contour, both displacements and rotations are equal to zero, and on such a boundary two compatibility

conditions must be satisfied. The boundary compatibility conditions, which are the coefficient of &/_dx and d_in the contour

forms in Eq. (24), follow:

(lV,leh)+<,,,o=0 (29a)

1 dN_o_.ottdto
Eh dx --_--=0 (29b)
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Transition conditions, used to analyze composite shells, are derived similarly as those for circular plates. They consist of

two residual equilibrium conditions

_/x(I) M(II) = 0 (30a)

d M_I)+_ M_U>_-0
dr x dx x (30b)

and two residual boundary compatibility conditions given as

/,i,i_-_+,_;_o
(30c)

_1_ '_ (30d)

The field equations given in Eqs. (25) and (26), together with appropriateboundary conditions represent the number of

equations sufficient to solve the shell bending problem for stresses M x andN_ The boundary compatibility conditions given

in Eqs. (29) are derived for the first time. Two boundary compatibility conditions given in Eqs. (29) have to be imposed on a

clamped boundary, and one compatibility condition given in Eq. (28b) must be satisfied on a simply supported boundary. Note

that without the boundary compatibility conditions the solution (Mx and N_) for the shell bending problems cannot be obtained

for problems with either the displacement boundary conditions given in Eqs. (28) or the mixed boundary conditions given in

Eqs. (29). The transition conditions given in Eqs. (30c) and (30d) enable the solution of composite shells by the CBMF.

The field equations given by Eqs. (25) and (26) may be uncoupled to obtain the following alternative systems:

d4Mx 4 d2q
_+4_ Mx= Ehott[(l+v)At+ad2t°]

dx2 a2 L h dx z J
(31a)

or

( d2Mx

d4N_ 4.4_4Nq_Eh +eh F,1 l a2,ataa4to]
dx 4 =-_a q _ 'Lt ÷_)h_ dr 4 J

(31b)

(32a)
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Ka d2No, r. , at d2to ]
(32b)

where _ = 3 (1 - v2)la2h 2. Note that both Eqs. (31a) and (32a) are fourth-order equations, and either one can be selected for

solution. Here, the moment equation (31a) is selected, and its general solution has the following form:

M x = C1 cosh fix + C2 sinh fix + C3 cos fix + C4 sin fix + LF;q) + T;At) (33)

where CI, C2, 6"3, and C4 are the constants of integration, and _'(q) and _p(At) are particular integrals for distributed loads and

temperature, respectively. The constants of integration are obtained by imposing appropriate boundary conditions. Once M x

is known, N_ can be calculated by back substitution from Eq. (3 lb). The solutions for two examples are provided to illustrate

the CBMF solution process. The first example is a short cylindrical shell subjected to thermomechanical loads. The second

example is a composite shell with clamped and simply supported boundary conditions.

Example 1: Analysis of a Short Cylindrical Shell

A simply supported cylindrical shell made of isotropie material with length L and radius a is shown in Fig. 3. The origin

• i

of the coordinate system is located at the centroid of the shell. The analysis is performed for two cases: ( 1) a uniformly distributed

load and (2) uneven heating with _t such that to = 0. The material and the geometric parameters of the shell are such that the

product/_L < 5; hence, it must be analyzed as a short shell. The general solution for each case is obtained by substituting the

particular integrals into the general solution given by Eq. (33) and then by imposing the boundary conditions for simply

supported contours at x = +L/2 to evaluate the constants.

Solution for the Mechanical Load

For this ease, _p(q) = 0 and _Fp(A0 = 0. The solutions obtained for M x and N_ after solving for the integration constants

in F_,q.(33) using simply supported boundary conditions at x = +L/2 have the following form:

Mx(x) =(q/232D)(g2 cosh/3x cos 3x-g 1 sinh /3x sin/3x) (34a)

N_ (x) = (qa/D)[ g2 (g2 - sinh/3x sin 3x) + gl (g! - cosh ]3x cos ]_x)] (34b)

where D = gl2 + g22 , gl = cosh _. cos 2, g2 = sinh 2 sin Z; and ;t, =/3L/2. If required, the displacement w may be calculated using

the stress-strain relations as
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.,(x): n"sinn.,J+g,+.,-coshn"cos/3,<)} (35)

Solution for the Thermal Load

For this case, particular integrals _(q) = 0 and _p(At)= -K(1 + v)atAt/h, and the final expressions for the internal forces

take the following form:

(36a)

Ifreqnired,w can be calculatedas

w(x) ------2(a:lW(_' IEDh )(g2cosh /ixcos 16x- g l sinh iBx sin IBx) (37)

The solution for this simple problem required a boundary compatibility condition (Eq. (28b)), even for a simply supported

boundary, and hence the example could not have been solved by classical BMF.

Example 2: Analysis of a Long Composite Shell

A composite cylindrical shell of radius a and length 2/. is shown in Fig. 4. This shell is composed of two regions with

different material and geometrical properties. Region I, bounded by contours 1-1 and 2-2, has material parameters E 1 and vl,

and thickness h1; and region II, bounded by contours 2- 2 and 3- 3, has material and geometric properties E2, v2, and h 2. The shell

is clamped along contour 1-1, and simply supported along the contour 3-3. Both regions are subjected to a uniformly distributed

load of intensity q. Region I is also subjected to a temperature change of At.

Total solution for the composite shell is obtained by superposing the two component solutions. Each component solution

involves four integration constants (C 1 to C4 in Eq. (33)); hence, there are a total of eight unknowns for the composite shell

The eight constants of integration are evaluated from the following eight conditions: two boundary compatibility conditions

for the clamped boundary 1-1 (see Fig. 4) given in Eqs. (29), two boundary conditions for the simple supported boundary

3-3 given in Eqs. (28), and four transition conditions at the interface 2-2 given in Eqs. (30).

For simplicity, the long shell condition (the products of131L and j_2L) is assumed for both components. Consequently, the

response for the composite shell can be obtained by superposing effects from the tt_ee boundaries: that is, from the simply

supported boundary, fixed boundary, and interface boundary as shown in Fig. 4.
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Response From the Fixed Boundary_ (Contour 1-1)

The local coordinate system is def'med such that the axis x 1 is placed along the axis of the shell, with the origin in the plane

defined by contour 1-1 (see Fig. 4). The solution process is similar to that presented for the short shell, given as

Mx(Xl)=(q/2fl_)e-#'X_(sin fllXl-cos fllXl) + _(At) (38a)

 oos
Using Eq. (38b), the expression for the displacement is obtained as

:, )[ *"  oos,,l+ - ]

(38b)

439)

Res_tmnse From the Interface (Contour 2-2)

The expressions for M x, N¢, and w, defined for regions I and II, respectively, are obtained as

M(I) (x 2 ) =e -[31x2(A1cos/fflX2 + B1 sin _lX2) + tF(At) (40a)

N(I)(x2)=2fl?e-_txz(-Bl cos/_lX2 + a I sin ,ix2 ) (40b)

w (I) = (- 1/aEh) 2,137e-13_x2(-BI cos _I x2 + A1 sin ]31x2) (40c)

M(II)(x 3) =e -132x3(A.2 cos _2x3 + B 2 sin/32x3) (41a)

N(lI)(x3)=2[3_e-13"x3(-B2 cos _2x 3 + 262 sin/32x3) (41b)

w (II) = (-1/aEh)21322e -/3"x3 (-B 2 cos/_2x3 + A 2 sin 132x3) (41c)

where A I, B1, A2, and B 2 are the constants of integration, and x 2 and x3 are defined separately for each region (Fig. 4). Four

constants of integration are calculated by imposing four transition conditions given in Eqs. (30) along the interface contour

2-2. The four transition conditions yield the following four equations to compute four constants of integration:

A1 _,42 =__(at) (42a)

]_1(BI -A1)+ _2(B2 -'42)=0 (42b)

2 2

-2 fl_ B;+2f_ B2= q q

33[ A 3
+ BI) +_(A,- 2 + B2)=0Elhl _ 1

The solution of Eqs. (42) yields the four integration constants:

(42c)

(42d)
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=(,/@';"_/'(_,_+,_ +_,_,_)+(qmC,-_)(_-_,_)]

,,:--(,/_)[,...,_.,j,l_(f,,_-kt,_)-(_/_,:)o-,)(,¢+_: +,_)]

(43a)

(43b)

(43c)

(43d)

duced into Eqs. (40) and (41) to obtain M x and N_ for both regions I and II. Then, displacement w, which can be calculated

following the procedure given earlier, has the following form:

Response From Simply Supported Conditions (Contour 3-3)

For this case, a procedure similar to that presented for the clamped edge effects along contour 1-1 is followed. The

coordinate axisx 4 is defined as shown in Fig. 4. Contour 3-3 is simply supported, and the conditions given in Eqs. (28) are applied

to obtain the expressions for the internal forces:

Mx(x4 ) = (q/2132 )e-[J2X4. sin /32x4 (44a)

Ntp(x4)=qa(e -f12x4 cos f12x4 - 1) (44b)

and w is calculated as

w(x4)=(qa2/Eh2)(1-e -#2x' cos f12x4) (45)

As mentioned earlier, solution for any point is obtained by superposition of the expansions given by Eqs. (38) to (45).

Analysis of the composite shell with simply supported, clamped, and interface boundaries can be obtained using CBMF. The

problem, however, cannot be solved using classical BMF because of the following missing boundary compatibility conditions:

Eqs. (29a) and (29b) for the damped edge, Eq. (28b) for the simply supported boundary, and Eqs. (30c) and (30d) for the

interface boundary.

Conclusions

The completed Beltrami-Michell Formulation (CBMF), wherein stresses are considered as the primary variables, is

obtained by augmenting the classical Beltrami-Michell Formulation (BMF) with novel boundary compatibility conditions. The
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CBMF, which can analyze s_ress, displacement, and mixed boundary value problems in elasticity, alleviates the limitations of

the classical formulation, which could analyze only stress boundary value problems. All equations of the CBMF for analyzing

circular plates and cylindrical shells subjected to both mechanical and thermal loads have been derived from the stationary

condition of the IFM variational functional. Transition conditions required for analyzing composite plates and shells made of

different materials have been established. The CBMF has been used to solve several stress, displacement, and mixed boundary

value problems in elasticity. In CBMF, displacements, if required, can be calculated from stresses by back substitutions. The

CBMF is a true alternative to the Navier's displacement formulation.
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Appendix Variational Formulation for CBMF

This appendix briefly describes the derivations of the CBMF governing equations for problems of two-dimensional

elasticity and bending of circular plates.

Governing Equations for Tw0-dimensional Elasticity

The variational functional of the IFM for a two-dimensional domain f2 bounded by the contour Fhas the following form

l'I_ s = A + B- W (46)
where

A= hI_2[crx _ °_u o_ Ov (47a)

n h f [ 02_u c_ - v%
: J_L-_

020 cry-VCrx020 2(l+v)_ ]d.¢2
¢ _2 E _-'_--'-ff-- xyj

(47b)

":'L(":

The variation of the functional with respect to u, v, and • is given as

(47c)

h OCrx+ °_xy onv Oa

h 0 2 B 2

_,,<,D+ + o2=.1v)--&--_-Jd_,_

-hfr, l(=::+%",-_,_+(%n,+%",-_)'@rl

+ hi/.[(u+ :)_(:xnx + Vxyny)+ (v+ _)('t;xynx+ ¢yyn,)]d/-'2

h o_ 0 OaVxy
(48)
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In Eqs. (47) and (48), F1 and r 2 are portions of the boundary, where traction and kinematio boundary conditions,

respectively, are imposed; Bx and By are components of body forces; an overbar denotes prescribed quantifies; and • is the

Airy's stress function. The stationary condition of the variational functional yields the governing equations of the CBMF given

in Eqs. (2), (3), (5), and (6).

Governing Equations for Bending of Circular Plates

For a circular plate subjected to distributed loads q and the temperature change At,

J_oLrk a: J _ r arU (49a)

(49b)

W = 2_rirbrqwrdr (49c)

where ra and rb are the radial coordinatesof the plate.

The variation of the IFM functional with respect to variables w and _ can he written as

 rI$: r"F<:rr, +,o}
[ J,:Le,2< "s dr .]dr_

+frbIgr-vgc p d 2 (rll/lqj-vil/lr+_tdz_)]rdr_li 1Jr: L" K dr 2 K h dr )J

+rrM,(-,_'_lr_ +[(_(r",)-",)_}[ [ '
L _. dr ,).ira K h J Jr a

(50)

The stationary condition of the functional yields the CBMF equations for a circular plate given in Eqs. (11) to (14).
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25



q
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25



_,, "][ _ ']

T- +i_ -;-

l_x t;x _x Ix

_1/++, . ....................

fir'- m I t=.__"_-'tttt tttttt ttl__ ..,

o

o

o



Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
Public reportingburdenfor this collectionof informationis estimated to average 1 hourper response, includingthe time for reviewing instructions,searchingexisting data sources,
ga!her!ng and mainta.ining" the ..dataneedecI, and comple!ing and reviewingthe collection of information. Send comments regardingthis burden estimate or any other aspect of this

COlv_s!o.nor mvorn_..tlon:mc_uo!ngsuggestionsfor reducingth=sburden, to WashingtonHeadquarters Services, Directorate.for InformationOperationsand Reports,1215 Jefferson
ua m H_gnway,_uite 1L-'u4,Arl=ngton,vA 22202-4302, and to the Offee of Management and Budget, Paperwork ReducttonProject (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORTTYPE AND DATES COVERED

January 1995 Technical Memorandum
4. TITLE AND SUBTITLE

Completed Beltmmi-Michell Formulation for Analyzing Mixed Boundary Value
Problems in Elasticity

6. AUTHOR(S)

Surya N. Patnaik, Igor Ka_evic, Dale A. Hopkins, and Sunil Saigal

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. FUNDING NUMBERS

WU-505--63-53

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9296

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 106809

11. SUPPLEMENTARYNOTES

Surya N. Patnaik, Ohio Aerospace Institute, 228()0 Cedar Point Road, Brook Park, Ohio 44142, and NASA Resident

Research Associate at Lewis Research Center; Igor Kaljevic, Ohio Aerospace Institute; Dale A. Hopkins, NASA Lewis

Research Center; Sunil Saigal, Carnegie Mellon University, Department of Civil Engineering, Pittsburgh, Pennsylvania

15213. Responsible person, Dale A. Hopkins, organization code 5210, (216) 433-3260.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 39

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13.

i:

ABSTRACT (Maximum 200 words)

In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns, is known as the Beltrami-Michell

Formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the more prevalent displace-
ment of mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted application, could not become a
true alternative to the Navier's displacement method, which can solve all three types of boundary value problems. The restrictions in

the BMF have been alleviated by augmenting the classical formulation with a novel set of conditions identified as the boundary
compatibility conditions. This new method, which completes the classical force formulation, has been termed the Completed Beltrami-
Michell Formulation (CBMF). The CBMF can solve general elasticity problems with stress, displacement, and mixed boundary
conditions in terms of stresses as the primary unknowns. The CBMF is derived from the stationary condition of the variational

fimctional of the Integrated Force Method. In the CBMF, stresses for kinematically stable structures can be obtained without any
reference to the displacements either in the field or on the boundary. This paper presents the CBMF and its derivation from the
variational functional of the Integrated Force Method. Several examples are presented to demonstrate the applicability of the completed
formulation for analyzing mixed boundary value problems under thermomechanical loads. Selected example problems include a
cylindrical shell, wherein membrane and bending responses are coupled, and a composite circular plate.

14. SUBJECT TERMS

Force method; Completed Beltrami-Michell formulation; Boundary compatibility

conditions; Elastic continua, Thermomechanical stress analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

29
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102


